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An Algorithm for Evaluation of Two-Electron 

Integrals by Numerical Integration Method* 

Evaluation of integrals is a critical step in quantum mechanical calculations of 
molecular electronic structures. Among them, the two-electron integrals are 
especially difficult to evaluate. While a great deal of literature has been compiled 
for analytic evaluation of one- and two-electron integrals between certain types 
of basis functions, namely, the Slater-type functions and Gaussian-type functions, 
no analytic method can be developed for functions of arbitrary forms. The latter 
usually arise in perturbational calculations of small systems. The only solution 
to this problem is the method of numerical integration. In this note, we present 
an algorithm for computing two-electron integrals based on a special choice of 
coordinate system. An important feature of this algorithm is the disappearance 
of the troublesome r12 (the interelectronic distance) factor in the denominator of 
the integrand which is the usual cause of convergence problems in other methods 
[I]. Therefore, the accuracy can be improved by directly increasing the number of 
quadrature points. The method is also simple and easy to program on a digital 
computer. 

The coordinate system used here is a combination of perimetric and one-center 
coordinates [2]. The perimetric coordinates are defined as 

u = r2* - Ylfz + y12 f o<u<co, (1) 
v = rla - rZa + r12 ? o<v<co, (2) 

w = 2(rl, + rza - r12), o<w<q (3) 

where r,, and rza are the distances from the first and second electrons to center A 
and r12 is the distance between the two electrons. The volume element (Fig. 1) 

drl dr2 = rlarZar12 dr,, dr,, dr,, sin B,, d&, dx dF, (4) 

may be expressed in terms of perimetric coordinates as follows: 

dT1 dT2 = (~/W(U + v)(~u + w)(~o + W) du du dw sin 8,, df?,, dx, (5) 
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FIG. I. The coordinate system. 

where, for simplicity, the y integration has been carried out. For a typical two- 
electron integral Z, with no q~ dependence, we have 

(6) 

= (7$54) J-1 J’r lPn b*(l) Ml) #a*(2) +,(2)(2u + 4 
u y w=. e-o X=O * . 

x (2v + w) du dv dw sin Or, d&, dx. 

In this work, we have used the Gauss-Laguerre quadratures for U, v, w integrations 
and the Gauss-Legendre quadratures for angular integrations. After a change of 
variables, Eq. (6) becomes 

Z = (n3/128) j-jj- fj- d,*(l) $dl) 4,*(2) MWu + wX2v + 4 du du dw 
“, y, ~=o e’,x*=--l 

x cos(8;,(~/2)) de;, dx’, (7) 

where 
4; = G%zm - 1, (8) 

x’ = (/y/%-) - 1. (9) 

To illustrate the use of the method, we have computed some exchange integrals 



EVALUATION OF TWO-ELECTRON INTEGRALS 245 

arising from the calculation of the diatomic electronic wave functions. For such 
calculations, the following relationships are useful: 

r 2b = {r& + R2 - 2Rr,, cos 13z,,)1~z, (10) 

cos e,, = -COS el,(cos e;,)-1 sin(&,x/2 - e;,), (11) 

e;, = tan-‘{ - tan e,, COS(~‘TT);, (12) 

where rzb is the distance from the second electron to center B. In Table I, we list 
some of the integrals computed by the present method along with the “exact” 
values obtained analytically. At least two points should be noted. First, since the 
integrand is not symmetric with respect to the exchange of centers there is a con- 
siderable difference in the accuracy of the final result when the two centers are 
interchanged. This is especially so when the two functions at a and b extend very 
differently in space. The convergence is always better when the more contractive 
function is centered at a. For example, the second integral in Table I will be 
0.00278 if Is, and Is, are interchanged. Second, the quadrature points are a 
complicated function of the integrand. They have to be determined by trial and 
error. The present choice of ~1~ = n2 = n3 and n4 = n5 is only for the sake of 
convenience; it is by no means the most efficient one. 

TABLE I 

Some Two-center Exchange Integrals Computed by the Present Algorithm” 

R Integral Exponents % n2 4 4 n5* I” I E*&Ctd 

_-~~.~~--- __~ _~--- 

1.0 lls,1sb/lsJsbl 2.189, 1.183;2.189, 1.183 12 12 12 8 8 0.35116 0.35115 

2.022 lI&l%/lsal~*l 5.1, 1.2; 5.1, 1.2 6 6 6 8 8 0.00862 0.00862 

2.022 m3~%/2sals*l I .625, 1.2; 1.625, 1.2 10 10 10 10 IO 0.16737 0.16731 

2.022 [2Pl)oalS*/2PooJSal 1.625, 1.2; 1.625, 1.2 8 8 8 8 8 0.20129 0.20160 

2.022 [2PP,Jsbll&l%l 1.625, 1.2; 1.625, 1.2 8 8 8 8 8 0.02141 0.02148 

2.022 [2P,Js&,~s,l 1.625, 1.2; 1.625, 1.2 IO 10 10 10 10 0.17531 0.17512 

a Both distances and integrals are in atomic unit. 
b?l 11 n2 1 n3 are the number of the Gauss-Laguerre quadratures and n4, n5 are the number of 

the Gauss-Legendre quadratures. 
c Integrals computed by the present method. 
d Integrals computed analytically. 
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The present method is not restricted to two-center electronic integrals. It can 
be extended to three- and four-center integrals easily when more relationships 
like Eqs. (IO)-(12) are derived for the coordinates involving the other centers. 
Let the other centers be designated by C and D, we have the relations 

r lc = (f-12, -t AC2 - 2r,,AC cos Ol,ir)1/2, 

rid = {r,:z + AD ‘- 2r,,AD cos Blad}llz, 

COS elac = COS a cos Bla + sin (Y sin ela cos v, 

cos clad = cos j3 cos 8,, + sin p sin or, cos(p, + n), 

r 2c = {f-,“z + & - 2r12rI, cos e21cpy 

r2d = {r& + rtd - 2r12rld cos e21d)i12, 

cos be = (rF2 + rh - r&)(r& + r,“, - AC2)/(4r12r,,rta) 

+ [(I - cm2 e1ae>1’2(r2aAC)/(r12rle)l COS(X - y), 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

cos eZld = <r,“, + r,“cl - &)(rfd + rG - AD2)/(4r,,r,&J 

+ [(I - ~0~2 e,,,)l’2(r2,AD)/(r,2rld)l COS(X - a), (20) 

where n is the angle between plane ACB and ADB, and rlc , rid , r2e , and rzd are 
the distances between the electrons and the other centers; y is the angle between 
plane Al2 and AlCand 6 is the angle betweenplane A12 and AlD. Other quantities 
are defined in Fig. 1. The expressions for the other angles can be obtained by 
a relationship among the related angles similar to that in Eqs. (15) and (16). When 
this is done, the integration for a typical four-center integral can be carried out 
as follows: 

I= (r3/256) jjJ ii, Ax*(l) Ml) #~,*(2) M2)(2u + w)(2v + 4 
u,v,w=o B’,x’,v’=--1 

X du dv dw cos(O;,rr/2) de;, dx’ dy’, (21) 

where q~’ = (&-r) - 1. 
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